本发明公布了一种基于多局部相关特征学习的双视角人脸识别方法,主要在相关特征学习中使用多种局部信息来更好地掌握数据间真实的非线性结构,从而提高人脸识别的准确性。其实现过程为:确定每个训练样本的多种局部块;构建一个相关特征学习和多局部融合的统一优化框架,然后交替迭代求解相关投影方向和多局部融合系数;最后对训练和测试样本进行特征提取和特征融合,并使用最近邻分类器进行识别。与现有技术相比,本发明提出的人脸识别方法更具有效性和鲁棒性。
本发明公布了一种基于多局部相关特征学习的双视角人脸识别方法,主要在相关特征学习中使用多种局部信息来更好地掌握数据间真实的非线性结构,从而提高人脸识别的准确性。其实现过程为:确定每个训练样本的多种局部块;构建一个相关特征学习和多局部融合的统一优化框架,然后交替迭代求解相关投影方向和多局部融合系数;最后对训练和测试样本进行特征提取和特征融合,并使用最近邻分类器进行识别。与现有技术相比,本发明提出的人脸识别方法更具有效性和鲁棒性。
商品类型 | 专利 | 申请号 | CN201610188792.9 | IPC分类号 | |
专利类型 | 发明 | 法律状态 | 有权 | 技术领域 | |
交易方式 | 技术转让 | 专利状态 | 已公开 | 专利权人 | |